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A novel method for calculation of Hele-Shaw flows with receding free boundaries is presen- 
ted. The method is applied to flows with suction from a point sink and to flow in a channel 
with parallel walls. In each case the unknown fluid region is mapped conformally onto the 
unit disc, the free boundary being mapped onto the unit circle. This mapping, which is a 
function of position and time, is calculated numerically at points on the unit circle using a ver- 
sion of the boundary integral method. The free boundary is thus found without explicit 
calculation of the pressure at internal points, and the computation times are much less than 
those for other numerical methods for this problem. Numerical results are compared with 
explicit analytic solutions for several test problems. 0 1985 Academic Press, Inc. 

1. INTRODUCTION 

This paper is concerned with the numerical solution of some time-dependent free 
boundary problems arising from flow of an incompressible viscous fluid in a 
Hele-Shaw cell, which consists of two parallel horizontal plates separated by a thin 
gap. A blob of fluid is forced to move in this gap by sources or sinks within the 
fluid, or by injection or extraction at the edges of the cell. For slow flow in a thin 
gap, the flow is approximately two4imensiona1, and with suitable scaling the fluid 
velocity q is given in Cartesian coordinates by 

q = (24, u) = -VP, (1.1) 

where p is the pressure; the equation of continuity then gives 

Vp=o (1.2) 
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in the fluid region o(t). We shall ignore surface tension effects [17], and assume 
that the pressure is constant at the fluid-air interface %2(t); this constant may be 
taken equal to zero. The second condition applying on 8s2(t) is that the material 
derivative of p vanishes since p is constant there, so 

P = 0, $--Vp.Vp=O on &2(t). (1.3) 

In this paper we shall only consider flows with a single point source or sink, and 
flow in a channel with parallel walls y = f: rt with uniform suction at infinity. In the 
former case, if the sink is of strength Q and is at (x,, yO), then near this point 

P - -gln((x-x0)‘+ (~-y,)*)~‘*, (1.4a) 

while for flow in a channel 

P - - vx as x+co, (1.4b) 

where the extraction rate is 2nV, and the fluid velocity tends to (V, 0) as x -+ co. 
Finally, we shall assume that %2(O) is a given analytic curve. 

In addition to describing Hele-Shaw flow, the problem of Eqs. (l.l)-( 1.4) also 
models two-dimensional flow in a porous medium under D’Arcy’s law [a], and a 
process in electro-chemical machining [9]. 

If in Eq. (1.4), Q > 0 (so that there is injection of fluid at (x,, yO)), the free boun- 
dary problem of Eqs. (l.l)-(1.4a) can be shown to be well-posed [4], and com- 
putation of the free boundary &2(t) presents no difficulties [S]. However, when 
fluid is extracted (Q < 0), the behaviour of the solution is in general quite different. 
The free boundary is now receding, and a local linear stability analysis shows that 
small perturbations with wavelength 27r/n of a free boundary receding with speed V 
have a growth rate elniv’, [ 171. The free boundary is thus unstable to perturbations 
of all wavelengths, with the shortest wavelength disturbances growing the fastest. A 
global, nonlinear analysis (see Sect. 2 and [7]) reveals that almost all receding 
Hele-Shaw flows break down in finite time or before all the fluid has been extrac- 
ted. This breakdown consists of the formation of a cusp in the free boundary, at 
which the model predicts infinite fluid velocities, and for a given analytic curve 
X?(O) there are solutions which start with their initial curve arbitrarily close to 
~X2(0) and which blow up in an arbitrarily short time. 

Numerical calculation of receding Hele-Shaw problems therefore presents for- 
midable difficulties. Of the two types of problems we consider here, we may achieve 
reasonable results with flow in a finite blob, provided that the exact solution for the 
given initial curve does not exist for too long; but it is inevitable that computation 
of flow in channels will eventually break down, and we do not therefore expect to 
be able to reproduce solutions such as the SaffmanTaylor “fingers” (Section 2) 
over large time intervals. One of the results of interest in this work, therefore, is the 
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timescale over which successful reproduction of receding Hele-Shaw flows is 
possible before numerical instabilities cause the numerical solution to break down, 

Recent work in this field has been described by Meng and Thomson in [lo] and 
by Meyer in [ 123; there are also numerical solutions for steadily progressing chan- 
nel flow in [S, 151. Meng and Thomson use a vortex element method based on a 
line distribution of vorticity on the free boundary; however, they provide no quan- 
titative comparison with explicit solutions, and they do not mention the possibility 
of cusp development. Meyer uses the method of invariant embedding to solve Eqs. 
(l.l)-(1.4a) for a shape which is initially a limaCon containing a point sink 
(represented by a small circle surrounding the origin on which the pressure is a 
large negative constant). This solution develops a cusp before all the fluid has been 
extracted; we shall discuss it further below, in Sections 2 and 3. Here we merely 
remark that although the method of [12] is accurate it is also expensive in com- 
puter time, because the iterative scheme used is slow and because the method used 
calculates the pressure at all internal mesh points. In general, it is only of interest to 
know the free boundary aL2(t); consequently, any method which computes only the 
free boundary, without the expense of computing the interior pressures, is desirable. 
In Section 2 we use conformal mapping to transform the moving boundary 
problem to one in a fixed domain, in this case a circle (similar techniques have been 
used in [ 1 l] to find numerical solutions to the Rayleigh-Taylor problem). For our 
particular problem, this results in a considerable saving of computational cost. The 
transformed problem is solved using a boundary integral method which proves to 
be well suited to a circular geometry. This numerical method is illustrated by com- 
parison with the explicit solutions to be presented in Section 2. 

2. APPLICATION OF COMPLEX VARIABLE THEORY 

Since the pressure p is harmonic, the complex potential w(z, t) = -(p + ill/), 
where .z = x + iy and I,G is the harmonic conjugate of p, is analytic for all z in 0(t) 
except at a point sink at, say, z = zO, near which w(z)- Q/27r In(z - zO). Condition 
(1.3) thus becomes 

Re( w) = 0, (2.la) 

Re(g)= -jfl’ (2.lb) 

for z E 6X2(t). 
Because G(t) is unknown for t> 0, it is not easy to solve directly for w(z, t). 

Instead, we map a(t) conformally onto a known, fixed region in which the complex 
potential is easily calculated; we then use condition (2.lb) to formulate a problem 
for the unknown mapping function in this fixed domain. 

Following [ 143, let us map s(t) onto the unit disc by 

z =f(L t), (2.2) 
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where f is conformal for 1 [I < 1; i.e., f is analytic and df/d[ # 0. The Riemann mapp- 
ing theorem guarantees the existence of such a function whenever Q(t) is finite and 
simply connected, and we may specify the image of one point and of one direction 
through that point [ 131. We use these conditions to require that f(0, t) = 0 and 
that the directions of the real z and real [ axes should coincide at their respective 
origins. We can now immediately write down the complex potential in the 1; plane: 
this is W(5) = (Q/an) In <, and using the fact that al/at = - (8f/&)/(df/di), we have 
awlat = - Q(8f/&)/(2n dfldi), so that after clearing Idf/dil’ from both sides, (2.lb) 
becomes - 

on I[1 = 1. 

Given L?(O), we therefore have to find a function f([, t) such that 

(i) f([, t) is analytic in Ill < 1, t > 0, 

(ii) f'(i, t)#O in Ii1 Cl, t>O, 

(iii) f(0, t) = 0, f’(0, t) is real and positive, t 2 0, 

(iv) The image of I[[ < 1 underf(i,O) is sZ(O), 

(v) Re(i(dWi)(aflat)) = Q/2x on ICI = 4 t > 0. 

(2.3) 

(2.4) 

We remark here that cusp formation corresponds to the situation where a zero of 
df/dl; (which at t =0 must lie outside [cl = 1) reaches Ill = 1; (2.3) then shows that 
laf/at( is infinite at that point. We shall later approximate X?(t) by straight lines 
joining the images of 2N points equally spaced around Ill = 1. Since the local scal- 
ing of the map (2.2) is Idf/d[l, the images of points on I[[ = 1 near to a zero of df/d( 
(and so where &2(t) has high curvature) are relatively close together, and &2(t) is 
thus represented most accurately where it is most highly curved. 

We shall discuss here the example treated in [12], 

z = a,(t) i + a,(t) c2, (2.5) 

where, from (2.3), we obtain u: + 20; = (et/n) + rx2 + 2fl*, u:a2 = a2/?, where 
a,(O)= CX, ~~(0) =p, and 4p2 <cr2. There is a zero of dz/d[ at [ = -u,/2u, which 
reaches Ill = 1 when u: = 4u$ at time t = tcrit = (n/Q)(6(~~/I/4)~‘~ - CI’ - 2/12), and at 
this stage the free boundary develops a cusp (see Fig. 2). 

The second class of flow we describe is flow in a channel with walls y = + 71. We 
shall consider only flows which are symmetrical about the centerline y =O. Once 
again we map Q(t) conformally onto the unit disc ICI < 1, but since Q(t) now 
extends to infinity in the positive x-direction, we write 

z = -In i + h(<, t), (2.6) 
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where h({, t) is analytic in I[[ < 1, h is real on the negative real axis, and the prin- 
cipal branch of the logarithm is taken. The complex potential is now - Vln [, and 
we find [7] that h must satisfy 

(i) A([, t) analytic in /cl < 1, t > 0, 

(ii) -l/[+(dh/dc)#Oin 151<1, ta0, 

(iii) h([, 0) is known, 

(iv) Re(([&/d<-- 1)8@?)= -V on [[I = 1. 

Note that it is not necessary to specify h(0, t). 
We shall discuss in particular two examples. First, when 

2 = -In i + b,(t) + b,(t) i, 

(2.7) 

(2.8) 

we find that b,, - #$ = Vt - $e2, b, e ~ *O = E, where b,(O) = 0 and b,(O) = ~(0 < E < 1). 
If E is small, at t = 0 the free boundary consists of a small perturbation of a planar 
boundary; it can be written x N E cos y + O(e2). However, as t increases, this per- 
turbation grows, until at t = fcrit = ( l/V)(s2/2 - 4 + ln( l/s)) a cusp forms (Fig. 3); 
once again this is caused by a zero of dz/dc reaching I[[ = 1. 

Our second example is discussed in [16]. Here, we take 

where 

z= -ln[+d(t)+2(1 -A)ln(l +a(t)[), (2.9) 

a(O)=& (06&< l), (U/&)((l -a2)/(1 -&2))-2A(1-A)=eV1, 

d(t)= Vt-2(1-1)21n((l-a.2)/(1-~2)), and 1 is an arbitrary parameter with 
0 < A< 1. If E 4 1, at t = 0 this solution also has a free boundary which has the form 
X-E cos y + O(e2). However, the solution does not break down; instead the pertur- 
bation grows until for large values of t it forms a steadily progressing “finger” 
occupying a fraction A of the channel and moving with speed U = V/A, (Fig. 1). 

x 

FIG. 1. Sketch of the development of a Saffman finger (Eq. (2.9)). 
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3. NUMERICAL SOLUTION 

We first consider flow with a point sink at the origin. Equation (2.4) can be 
rewritten as a pair of partial differential equations as follows. Define polar coor- 
dinates p, 8 so that i = peie, and let f(c, t) =f,(p, 8, t) + if,(p, 8, t), where fi and f2 
are real functions which are harmonic in p < 1 and satisfy the Cauchy-Riemann 
equations 

afl 1 af* af* 1 afl -=--> -= --- 
ap P a6 ap p ae’ 

Condition (2.4~) may then be written 

afl afi af2 af2 Q 
apdr+dpdt=%r 

on p=l. (3.1) 

We also have, from (2.4iii), that 

j-zrf;(l, 6, t)d0= j2nf2(1, 8, t)de=O, t > 0. 
0 0 

We calculate fi and f2 at a series of time levels 1= n At, n = 1,2,... . The time 
derivative in the boundary condition (3.1) is approximated by an explicit difference, 
and we find the following set of equations to be solved for f ‘I”) and f p), the values of 
fi and f2 at t=n At: 

vf(;‘=O, (3.2a) 

v*f+o in p< 1, (3.2b) 

with boundary conditions on p = 1, n > 0, 

and with the subsidiary conditions 

I *“sI”‘(l, @de=0 
0 

(3.4) 

s 
*nfp)( 1,8)d0 = 0. 

0 
(3.6) 
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For n 2 1 we calculatefr) and j-y) using known values off?- ” and f $‘-‘I. For 
n = 0, Eq. (3.4) is replaced by an initial condition 

t-i”’ = s(e) on p= 1, (3.7) 

where g is the real part off(e”, 0), and is assumed known. For a known initial fluid 
region Q(O), g may be computed numerically by, for example, Theodorsen’s method 
161. 

As stated above, the values of SI and f z which are of interest are those on the 
boundary p = 1 of the solution region, and so we use a boundary element method 
to obtain an approximate solution to Eq. (3.2). This method is becoming more 
widely known, and descriptions can be found in [ 11. The present problem differs 
from previous applications of the boundary element technique in two ways: first we 
have an unusual set of boundary conditions, the effect of which will be discussed 
later, and second the solution is to be obtained on a circular region, whereas the 
method is normally applied to polygonal regions, or polygonal approximations of 
other regions. We will first describe the modifications of the standard method due 
to the circular region. 

Let @ be an unknown function harmonic in p < 1, and let co be a point on p = 1. 
Then we can use Green’s theorem to show that 

(3.8) 

where C is the circle p = 1, and $(c; co) = In I[ - col. Now [ and co both lie on p = 1, 
so writing [ = e”, co = eiso, we obtain 

$(i; Co) = ln 12 sin +(e - eo)l, 

and furthermore the normal derivative of tj has the particularly simple form 
a ul/aP = 4. The circle C is divided into elemental arcs and @ and d@/Bp are 
approximated by simple functions on each element in terms of nodal values. 
Equation (3.8) is now applied at each nodal point as in the conventional boundary 
element technique. 

We will now describe the solution of Eqs. (3.2~(3.6) using piecewise linear 
elements. All the problems considered in this paper are symmetric about the line 
8 = 0; i.e.,fr(p, 2n - 8, t) =fl(p, 8, t),f2(p, 271- 8, t) = -f2(p, 8, t), and so we only 
consider the half circle O<e<rr. This is divided into N equal arcs, 
kde<e<(k+ i)de for k=o, 1, . . . . N - 1, where AtI = n/N, and nodal points are 
taken at 8 = 8, = k Ati, k = 0, . . . . N. Let f$) be the approximate value of fr) at 
p = 1, I3 = 8,, and similarly let f&),fi;)‘, and f&J’ be the corresponding values of 
fp), af’,“)/ap, and afy)/ap. The application of (3.8) with @ replaced by fp) gives a 
set of (N + 1) linear equations relating vk)} and {j-y)‘} for k = 0, . . . . N, which is 
effectively the numerical solution of Eq. (3.2a). Similarly Eq. (3.2b) yields a further 
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(N + 1) equations relating u&j} and {f&j’}. The Cauchy-Riemann equation (3.3) 
is discretized on the kth element as 

The orientation of the mapping can be fixed by imposing 

We now have 3(N + 1) equations relating the 4(N + 1) unknowns. When n = 0 
the remaining (N + 1) equations come from applying (3.7) at 8 = 8,, k = 0, ..,, N, 
while for n > 0, they are provided by Eq. (3.4). 

The subsidiary conditions in Eqs. (3.5) and (3.6) have not so far been considered. 
Condition (3.6) is automatically satisfied once symmetry has been assumed but con- 
dition (3.5) will not necessarily be satisfied. However, in practise, we observe that 
the algebraic system derived from Eqs. (3.2)-(3.4) is nearly singular in the sense 
that one of the eigenvalues is much smaller than the rest; the explanation for this is 
as follows. The mapping z =f([, t) is unique only if the image of one point is 
specified, and by ignoring Eq. (3.5) we are underspecifying the problem. Ideally this 
would be brought out by the system of linear algebraic equations becoming 
singular, but since these equations have been derived using approximate 
integration, this exact singularity has been lost. The near singularity of the algebraic 
system is avoided by replacing one of the Eqs. (3.4) by the approximate form of 
Eq. (3.5). This difliculty does not occur when n = 0, since the initial mapping is 
chosen to satisfy f(0, 0) = 0. See the Appendix for a further discussion of this point. 

The second problem which we consider is that of flow in a channel governed by 
Eqs. (2.7). These are again recast as partial differential equations by setting 
h(i, t) = h,(p, 0, t) + ih,(p, 0, t). Following the procedure for the previous problem 
we arrive at the following system: 

V2h, =O, V2h2 = 0 in p< 1, t30, (3.9) 

with boundary conditions 

ah, ah, -=- 
ap a8 

onp=l,tBO, 

ah, ah, 

( > 
-.-I +ah,ah,=-~ 

at ap at ap on p= 1, t>o, 

(3.10) 

(3.11) 

and with h,( 1, 8 ,O) given. These equations are discretized in time and then solved 
using boundary elements exactly as before. There are, however, no subsidiary con- 
ditions corresponding to Eqs. (3.5) and (3.6), and the algebraic system derived from 
the differential equations and boundary conditions is clearly non-singular (see 
Appendix). 

581/60/3-3 
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We shall present results using both linear and constant approximations for fl 
and f 2 (or h1 and h,) on each arc. The discretization for constant elements is as 
straightforward as that for linear elements described above, although we remark 
that we have had to replace afl/% in Eq. (3.3) (and likewise in Eq. (3.10)) by a 
simple difference approximation. Last, in order to make comparisons with other 
numerical methods, we estimate our computing cost as follows. At each time step 
we solve a set of 4(N + 1) x 4(N+ 1) linear equations with a full matrix by a stan- 
dard L-U decomposition with pivoting; this takes approximately 32N3/3 
operations. In addition, it is worth remarking that most of the cost of assembling 
the matrix for these equations comes from the discretization of Eqs. (3.3) and (3.8), 
which depends only on the (fixed) geometry in the c-plane; this part of the assembly 
cost is thus incurred only once during the solution process. 

4. RESULTS 

As a test problem for flow with a point sink, we consider the example described 
earlier in Eq. (2.5). We take Q = -1, and start with the shape given by z = 25 + ii’, 
for which blow-up occurs when t = tcric = 5.4786. 
Table I shows the results of various calculations of this problem; the half circle is 
divided into N equal elements, and the tabulated value of tcrit is the last timestep 
before the cusp forms. The calculations were carried out using both linear and con- 
stant approximations tof, and f 2 on each element; these are denoted by the letters 
L and C. 

We see from Table I that all the results are acceptable apart from those which 
should be most accurate, namely with N = 24 and with linear approximations. This 
is a phenomenon which appears even more noticeably in our next example; it arises 
because we are trying to calculate a solution to a problem which is physically 
unstable. 

As mentioned in Section 1, a physical instability of wavelength 271/n grows at a 
rate proportional to ei”lV’, and this is reflected in the behaviour of the numerical 
solution (see the end of this section). By taking more elements, we permit the 
introduction of shorter wavelength instabilities into the numerical problem; these 

TABLE I 

Calculations of Blow-Up Time (Exact Value 5.4786) 

N At tcril N Al I cnt 

16L 0.05 5.50 16C 0.05 5.45 
16L 0.02 5.44 16C 0.02 5.40 
24L 0.05 5.15 24C 0.05 5.50 
24L 0.02 4.96 24C 0.02 5.46 
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FIG. 2. Computed free boundary profiles for the cardioid problem with the sink at the origin, drawn 
at time intervals of 0.5. 

arise from rounding errors and the approximate solution technique, and they may 
cause blow-up to occur earlier than the critical time which we are trying to 
calculate. 

Figure 2 shows the result of the calculations performed with N = 16, At = 0.05 
and with linear approximations; the free boundary profiles are drawn at time inter- 
vals of 0.5. It is clear from this figure that the most sensitive values off, are those 
nearest the origin, where tJ = n. In Table II we compare the calculated values for 
both 16 and 24 linear elements with t = 0.05 against those from the exact solution of 
Eq. (2.5), and it is seen that the agreement is good until each solution nears its 
blow-up time. 

TABLE II 

Comparison of Exact and Computed Values off,(n, f) 

Time t N= 16 N=24 Exact 

1.0 1.6386 1.6389 1.6389 
2.0 1.5148 1.5156 1.5155 
3.0 1.3728 1.3742 1.3739 
4.0 1.1996 1.2022 1.2011 
5.0 0.9514 0.9542 0.9521 
5.1 0.9160 0.9117 0.9162 
5.15 0.8967 0.8793 0.8964 
5.4 0.7692 0.7597 
5.45 0.7294 - 0.7081 
5.5 0.6720 - 
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This method has thus successfully computed the shape of the free boundary with 
suction. The calculations were performed on the Oxford University ZCL 2988 
machine; the complete run which produced Fig. 2 took less than 2 min. It is difficult 
to make exact comparisons with the computing times of Meyer [12], but our 
method is clearly faster, as would be expected from the argument at the end of the 
previous section. 

We now turn our attention to the calculation of channel flow using Eqs. (3.9) and 
(3.11). For our first example, we set V= 1 and take an initial shape given by 
eq. (2.8) as h([, 0) = ~5. This solution was discussed in Section 2; when E = 0.1, it 
blows up when t = tcrit = 1.8076. Using 16 elements on the half circle we were unable 
to proceed beyond t = 1.25 with linear approximations and t = 1.63 with constant 
approximations. When E = 0.2, the exact solution blows up for tcrlt = 1.12924. The 
results of our computation of tcrit in this case are shown in Table III, where in each 
case At = 0.01; the letters L and C again denote linear and constant approximation 
respectively. (We note here that since the rate of fluid extraction is 271, the timescale 
for channel flow is l/271 times that for flow with a point sink and with Q = -1.) 

The only one of these results which is acceptable is that which is theoretically the 
least accurate, namely constant approximations on 16 elements. The results of this 
computation are shown in Fig. 3, where the free surface profile is plotted at time 
intervals of 0.09. 

As an example of a flow which does not produce a cusp, the method was applied 
with h(c, 0) = 2(1- A) ln(1 + EC), as in Eq. (2.9), with 1= 1 and E = 0.2; the initial 
shape is then very similar to that in the previous calculation. Figure 4 shows the 
result of this calculation using constant approximations on 16 elements, and with 
At = 0.01. The free surface profiles are plotted using the same time interval as that 
in Fig. 3, but the computation now proceeds until t = 1.26 before instability arises 
(this would correspond to a time of 7.92 in flow with a point sink and Q = -1; the 
cusp in our previous example formed at t = 5.45). 

These results for channel flow illustrate the inherent instability of the problem, 
namely that small changes in the initial data (introduced by rounding errors, etc.) 
lead to large changes in the subsequent behaviour of the solution. To demonstrate 
this point further we consider the progress of an initially flat profile: that is, we take 

TABLE III 

Comparison of “Blow-Up” Times 

N fccitO 

16L 0.91 
24L 0.68 
16C 1.09 
24C 0.85 

a Exact value = 1.1294. 
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FIG. 3. Computed free boundary profiles for channel flow with initial shape given by Eq. (2.8), 
drawn at time intervals of 0.09. 

FIG. 4. Computed free boundary profiles for channel flow with initial shape given by Eq. (2.9), 
drawn at time intervals of 0.09. 
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h([, 0) = 0, for which the exact solution is h([, t) = Vt. As expected, oscillations 
develop in the computed free surface, and these grow with time. Using constant 
approximations on 16 elements and At =O.Ol we find that the maximum error 
grows by a factor of 1.86 in 5 time steps, and that the errors become 0( 10 ~ “) when 
t = 2.6. The growth factor is consistent over a long time interval and corresponds to 
a growth rate of e12.41; using linear approximations the corresponding growth rate 
of the maximum error is el”. Both of these growth rates agree broadly with the 
linear stability analysis mentioned in Section 1 if it is assumed that the shortest 
wavelength of the introduced errors is approximately 1/16th of channel width. 

All the calculations were performed in double precision arithmetic, and so the 
key factor in the creation of the initial instabilities would seem to be truncation 
errors in the spatial discretization. Provided that the timestep is kept reasonably 
small (a normal condition for explicit methods), the particular timestep used has 
very little influence on the results. In particular, it does not affect the onset of 
instability, showing clearly that the instabilities observed are not induced by the 
numerical method, but are inherent in the mathematical problem being solved. 

5. CONCLUSIONS 

The method described above has worked well for the diflicult problem of 
calculating these unstable flows. In particular it compares very favourably in terms 
of computing time with the method of Meyer for the calculation of flows with a 
point sink. As far as flow in a channel is concerned, these calculations have 
proceeded as far in time as any that we are aware of. However, the method is 
obviously limited to two-dimensional problems where a conformal mapping of the 
form discussed in Section 2 exists. We hope that these results show how a com- 
bination of complex variable theory and numerical methods can be used to good 
effect. 

APPENDIX 

We have stated that it is necessary to specify f(0, t) in order that the mapping 
function f(c, t) may be uniquely determined. In this Appendix we show that if is 
also necessary to specify f(0, t) at each timestep in the discretized problem for 
f(L t). 

Let us assume that, at the (n - 1)th timestep, f([, (n - 1) At) =f {+I) + if$" -'I is 
a known analytic function of [ satisfying (2.4). We therefore consider the problem 
of finding the function f ([, n At) =f’“‘([) which is analytic in /[I < 1 and satisfies 
the boundary condition (3.4) on l[l = 1; we shall show that the solution to this 
problem contains one arbitrary complex constant which can only be determined by 
specifying f (“‘(0). 
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Noting that, on I[\ = 1, aflap = c(dfld<), we rewrite Eq. (3.4) as 

df'"' di (p-f’“- 1’) 
> on Ill = 1, 

i.e., 

(A.1 1 

Equation (A. 1) is now a Dirichlet boundary condition for the function 
(f’“’ -f’“- “),I( c df”’ ~ ’ I/&) which, since df”“- “/d[ = 0, is analytic in I<] < 1 with 
at most a pole at [ = 0. It follows from the Poisson formula [3] that 

1 f’“‘(0) f’“‘([, t) =f’“- ‘I([, t) - - 
i df ‘” .~ ’ ‘( O)/di’ 

QAt(s+[) d.s 

Is/ = 1 2ns(s - i) Idf (n+l)/ds12 + iC, , 

where C, is a real constant. It can be shown that C,, must vanish if df’“‘(O)/d[ is 
real; it is therefore clearly necessary to specify f’“‘(O) in order that f’“‘([) may be 
uniquely determined. 

The corresponding procedure for channel flow, however, leads to the Dirichlet 
boundary condition 

(A.21 

on I[/ = 1 for the function 

h’“‘(c) - h’“- “(Q 
jdh’” - “id< - 1 ’ 

Now in equation (A.l) the denominator of the left-hand side vanishes at [ = 0, 
leading to one arbitrary complex constant in the solution. This is not the case for 
equation (A.2), since h’“- ‘I([) must satisty condition (2.7ii) which ensures that the 
unit circle is mapped conformally onto the fluid region. It follows that the solution 
for h’“’ is unique, even though it is not necessary to specify h’“) at any point in 
ItI < 1. 
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